Intelligent Fusion of Multisource Data for Sea Ice Classification

نویسندگان

  • Costas Tsatsoulis
  • Leen-Kiat Soh
  • Cheryl Bertoia
چکیده

In this paper we describe ARKTOS, a system that uses a Dempster-Shafer rule base to integrate data from multiple sources in order to classify sea ice. ARKTOS analyzes SAR imagery to generate a feature set that describes the image. Next it fuses the SAR-extracted features with digital grid climatology data and sea ice concentration data extracted from SSM/I imagery. The fusion is achieved by a set of Dempster-Shafer rules that use the multisource data to calculate belief for the various sea ice classes. The result is a fully automated system that ingests multisource data and outputs classified images of sea ice of the Beaufort Sea. ARKTOS is currently installed at the U.S. National Ice Center and at the Canadian Ice Services and is integrated in the operations flow of these organizations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multisource Data and Knowledge Fusion for Intelligent SAR Sea Ice Classification

In this paper we describe the fusion of various data and knowledge sources for intelligent SAR sea ice classification, thereby addressing the weaknesses of each information source while improving the overall reasoning power of the classifier. We equip our ice classification system, ARKTOS, with the capability of analyzing and classifying images unsupervised by emulating how a human geophysicist...

متن کامل

ARKTOS: An Intelligent System for Satellite Sea Ice Image Analysis

We present an intelligent system for satellite sea ice image analysis named ARKTOS (Advanced Reasoning using Knowledge for Typing Of Sea ice). The underlying methodology of ARKTOS is to perform fully automated analysis of sea ice images by mimicking the reasoning process of sea ice experts and photo-interpreters. Hence, our approach is feature-based, rule-based classification supported by multi...

متن کامل

Operational Evaluation of a Knowledge-Based Sea Ice Classification System

ARKTOS (Advanced Reasoning Using Knowledge for Typing of Sea Ice) is a fully automated intelligent sea ice classification system. ARKTOS is in use at the U.S. National Ice Center (NIC) for daily operations related to the NIC’S task of mapping the ice covered oceans. ARKTOS incorporates image processing, input from ancillary data, and artificial intelligence (AI) to analyze and classify RADARSAT...

متن کامل

Markov Radom Field Modeling for Fusion and Classification of Multisource Remotely Sensed Images

In this paper, we discuss a Markov Random Field (MR) modeling for multisource and multitemporal remotely sensed image fusion and classification. Satellite images provided by individual sensor are incomplete, inconsistent or imprecise. Additional sources may provide complementary information and the fusion of multisource data can create a more consistent interpretation of the scene in which the ...

متن کامل

A Set of New Sea Ice Feature Descriptors for SAR Images

In this paper, we present a set of algorithms for describing sea ice features in SAR images. These algorithms we have implemented and incorporated in the ARKTOS software package, an intelligent sea ice classification. These algorithms have unique characteristics. Some are extensions or adaptations of existing image processing techniques to the specific problem domain of satellite sea ice classi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999